Safety and efficacy of flow diverter therapy for unruptured intracranial aneurysm compared to traditional endovascular strategy: A multi-center, randomized, open-label trial

Junhyung Kim,1 Gyojun Hwang,2 Bum-Tae Kim,3 Sukh Que Park,4 Jae Sang Oh,5 Seung Pil Ban,6 O-Ki Kwon,6 Joonho Chung,1 Committee of Multicenter Research, Korean NeuroEndovascular Society

1Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
2Department of Neurosurgery, Bundang Jesaeng General Hospital, Seongnam, Republic of Korea
3Department of Neurosurgery, Soonchunhyang University College of Medicine, 4Bucheon Hospital, 4Seoul Hospital, and 5Cheonnan Hospital, Republic of Korea
6Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea

Running Title: Safety and efficacy of flow diveters

• Received: February 25, 2022 • Revised: May 19, 2022 • Accepted: June 20, 2022

Co-corresponding author: Joonho Chung
Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro,
Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2228-2150, Fax: +82-2-393-9979, E-mail: ns.joonho.chung@gmail.com, ORCID: https://orcid.org/0000-0003-2745-446X
O-Ki Kwon

Department of Neurosurgery, Seoul National University Bundan Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea

Tel: +82-31-787-7163, Fax: +82-31-787-4097, E-mail: meurokwonoki@gmail.com, ORCID: https://orcid.org/0000-0002-7379-9891

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © 2022 The Korean Neurosurgical Society
ABSTRACT

Objective: Endovascular treatment of large, wide-necked intracranial aneurysms by coil embolization is often complicated by low rates of complete occlusion and high rates of recurrence. A flow diverter device has been shown to be safe and effective for the treatment of not only large and giant unruptured aneurysms, but small and medium aneurysms. However, in Korea, its use has only recently been approved for aneurysms <10 mm. This study aims to compare the safety and efficacy of flow diversion and coil embolization for the treatment of unruptured aneurysms ≥7 mm.

Methods: The participants will include patients aged between 19 and 75 years to be treated for unruptured cerebral aneurysms ≥7 mm for the first time or for recurrent aneurysms after initial endovascular coil embolization. Participants assigned to a flow diversion cohort will be treated using any of the following devices: Pipeline Flex Embolization Device with Shield Technology, Surpass Evolve, and FRED or FRED Jr. Participants assigned to a coil embolization cohort will undergo traditional endovascular coiling. The primary endpoint will be complete occlusion confirmed by cerebral angiography at 12 months after treatment. Secondary safety outcomes will evaluate periprocedural and post-procedural complications for up to 12 months.

Results: The trial will begin enrollment in 2022, and clinical data will be available after enrollment and follow-up.

Conclusion: This article describes the aim and design of a multi-center, randomized, open-label trial to compare the safety and efficacy of flow diversion versus traditional endovascular treatment for unruptured cerebral aneurysms ≥7 mm.

Keywords: Aneurysm, Embolization, Endovascular procedures, Prospective studies

INTRODUCTION

The prevalence of intracranial aneurysms is 0.4% – 3.0% \(^\text{29}\), and aneurysmal rupture results in
subarachnoid hemorrhage that has a decimal prognosis with substantial mortality and morbidity. Advances in non-invasive brain imaging methods such as magnetic resonance angiography have facilitated the diagnosis of unruptured intracranial aneurysms, and the preventive treatment of unruptured intracranial aneurysm is generally recommended for an aneurysm with a diameter ≥7 mm.

Microsurgical clipping and endovascular coil embolization are two major treatment modalities for intracranial aneurysms. Equipped with the advantage of non-invasiveness and advances in devices and techniques, coil embolization has become the dominant treatment choice with lower procedural morbidity and mortality. However, coil embolization of wide-necked aneurysms is still difficult; even with adjunct use of stent, recurrence and retreatment rates are approximately 12% and 6%, respectively. Furthermore, larger aneurysms are associated with higher rates of recurrence even when complete or near-complete occlusion has been initially achieved, due to coil compaction leading to recanalization. A study revealed that large aneurysms (≥7 mm) were more likely to recur than smaller aneurysms (<7 mm) after coil embolization.

Flow diversion has been developed to address the challenges faced during traditional coil embolization. Flow diverters are designed to exert lower radial force to improve conformability and provide increased metal surface coverage for improved flow diversion, compared to conventional intracranial stents. They elicit remodeling of the parent artery primarily through the following mechanisms: 1) exclusion of blood flow into the aneurysmal sac, resulting in thrombus formation inside the sac, and 2) provision of a scaffold for endothelialization. A clinical trial using the Pipeline Embolization Device (PED, Medtronic, Minneapolis, MN, USA), the first commercially available flow diverter, revealed that flow diversion of large aneurysms (>10 mm) in the internal carotid artery with wide neck (>4 mm) showed a complete occlusion rate of 86% at 12 months, and major morbidity and mortality rate of 5.6%, and the device was approved by the United States Food and Drug Administration (FDA) for use in large aneurysms (>10 mm) with wide neck (>4 mm). Subsequently, a recent clinical trial using the Pipeline Flex Embolization Device for unruptured wide-necked aneurysms ≤12 mm demonstrated complete occlusion rate of 76.8% at 12 months with a major
morbidity and mortality rate of 2.1%. The United States FDA has expanded the instructions for its use in wide-necked aneurysms with a small- and medium-sized aneurysms.

In Korea, the flow diverter was initially approved for use in the treatment of unruptured aneurysms ≥15 mm, and only recently was it approved for aneurysms ≥10 mm. Currently, endovascular treatment options for wide-necked aneurysms <10 mm are limited to traditional procedures such as parent artery occlusion, coil embolization by multiple-catheter technique, or balloon or stent-assist technique.

The aim of this study is to assess the safety and efficacy of flow diversion treatment of unruptured intracranial aneurysms ≥7 mm by evaluating complication rates and complete occlusion rates at 12 months compared to traditional endovascular treatment in patients who are either to receive the first treatment or retreatments for recurrent aneurysms after initial endovascular treatment.

MATERIALS AND METHODS

Design

This is a prospective, multicenter (13 institutions), randomized, open-label trial to compare the safety and efficacy of treatment of unruptured cerebral aneurysms or recurrent cerebral aneurysms with a maximum diameter ≥7 mm by flow diversion versus coil embolization with or without adjunctive balloon or stent devices. Approval of the institutional review board at each participating institution has been obtained (See Supplementary materials for the approval documents). Participants will be randomly assigned to flow diversion or traditional endovascular treatment cohorts in a 1:1 fashion. The primary endpoint will be complete occlusion confirmed by catheter cerebral angiography at 12 months after endovascular treatment.

Study population

The study population will include patients aged between 19 and 75 years diagnosed with unruptured intracranial aneurysms or with recurrent aneurysms after initial endovascular treatments with a maximum diameter ≥7 mm arising from the internal carotid artery, anterior cerebral artery, middle
cerebral artery, or vertebrobasilar arteries. Recurrent aneurysms are defined as Grade 2 (70% to 89% aneurysm occlusion in orthogonal images of catheter cerebral angiography from optimal projection) or higher according to the Aneurysm occlusion grading system for endovascular aneurysm occlusion suggested by Meyers et al. (Table 1). Detailed inclusion and exclusion criteria of the study are described in Table 2.

Informed consent
The informed consent form will contain extensive information about this trial including the purpose of the trial, the study design, potential risks and benefits associated with the trial, and the participants’ rights and responsibilities.

Randomization
After complete explanation of the trial and signing informed consent, participants will be enrolled to the trial and randomized to either the flow diversion or coil embolization cohort in a 1:1 ratio using a computer-generated randomized sequence. For allocation concealment, central randomization will be performed, and a random number table will be kept by a third party other than the investigators. The participant will be informed of the treatment he/she is assigned when signing the informed consent for the treatment.

Treatment
Patients assigned to flow diversion will undergo placement of any of the following flow diverters available in Korea: Pipeline Flex Embolization Device with Shield Technology (Medtronic, Minneapolis, MN, USA), Surpass Evolve (Stryker Neurovascular, Fremont, CA, USA), and FRED or FRED Jr. (MicroVention, Tustin, CA, USA). Participants assigned to coil embolization will undergo endovascular coiling of aneurysms with or without adjunctive balloon or stent devices. Dual antiplatelet agents comprising of aspirin 100mg and clopidogrel 75mg will be administered to all participants 5 to 7 days prior to the procedure and continued for a maximum of 12 months, after
which aspirin monotherapy will be maintained for at least 2 years after the procedure.

Clinical and radiologic outcome measures

The primary endpoint will be complete occlusion (Grade 0 or 1 confirmed by catheter cerebral angiography according to the Aneurysm occlusion grading system) at 12 months after the treatment. Secondary endpoints will evaluate the short-term and the longer-term safety of the trial, and include the following: 1) any procedure-related complications defined as thromboembolic or hemorrhagic complications that occur within 30 days after the treatment, 2) severity of hemorrhage evaluated by Thrombolysis in Myocardial Infarction bleeding criteria, 3) delayed intracranial hemorrhage defined as spontaneous intracranial hemorrhage that occurs within 12 months after treatment, 4) delayed cerebral infarction defined as cerebral infarction due to thromboembolism within 12 months after treatment, and 5) neurologic status evaluated using the modified Rankin scale score at 1 month and 12 months. A summary of the scheduled visits is shown in Table 3.

Sample size

The primary endpoint will be the complete occlusion of the aneurysm at 12 months after the endovascular treatment. Based on data from previous studies, we estimate the long-term complete occlusion rate of cerebral aneurysms ≥7 mm to be 80%. The complete occlusion rate of recurrent aneurysms treated with flow diversion was 94.1%, and considering the improvements in device and technique, we estimate the complete occlusion rate of cerebral aneurysms using flow diverters to be 95%, yielding a risk difference of 15%. Taking into account a significance level of 0.05, and power of 80% for the two-sided chi-square test, the number of participants required is 76 per group. Based on our previous experience in which drop-outs of cerebral aneurysm patients were relatively rare, we expect a patient dropout rate of 5%, yielding the total number of patients required for the study to be 160 (80 patients per group).

Statistical analysis
The principal method of analysis is intention-to-treat analysis and a full analysis set will be used for statistical analysis, but per-protocol analysis may also be performed, as flow diverters may not be feasible in cases with unfavorable complex vascular anatomy. For bivariate analysis, a two-sample t-test or Mann–Whitney U test will be performed for continuous variables, and the chi-square test or Fisher’s exact test will be used for categorical variables. The primary and secondary outcomes will be evaluated by logistic regression analysis, and the effect size will be presented as odds ratios and 95% confidence intervals.

RESULTS

The trial will begin enrollment in 2022, and clinical data will be available after enrollment and follow-up.

DISCUSSION

This study aims to provide definitive data on the safety and efficacy of flow diversion with devices available in Korea in comparison to traditional endovascular treatment for unruptured cerebral aneurysms ≥ 7 mm.

Previously, several studies have compared the treatment outcomes of flow diversion and coil embolization, but they were retrospective studies. A systematic review and meta-analysis by Zhou et al. reported that flow diversion showed a significantly higher complete occlusion rate than coil embolization and a subgroup of stent-assisted coil embolization. A recent meta-analysis comparing flow diversion treatment with conventional endovascular treatment revealed that flow diversion was associated with higher 6-month complete occlusion rate for large or giant aneurysms, but no such difference was observed for non-large or giant aneurysms. The current randomized trial is expected to minimize selection bias and confounding factors due to unequal distribution of significant factors, and to warrant direct comparison of the two treatment methods.
The off-label use of flow diverters for aneurysms <10 mm has already been prevalent, and its efficacy and safety have also been reported for different flow diverters such as FRED (MicroVention, Tustin, CA, USA) and SILK (Balt Extrusion, Montmorency, France). A meta-analysis of flow diversion treatment for intracranial aneurysms <10 mm revealed the complete occlusion rate of 84.2%, and procedure-related mortality and morbidity of 0.9% and 5.2%, respectively. A matched-cohort study by Chalouhi et al demonstrated that flow diversion was associated with a significantly higher complete occlusion rate than coil embolization (70% and 47.5%, respectively, P = 0.04) without additional morbidity in the treatment of small aneurysms <10 mm. To date, no study has directly compared the treatment outcomes of flow diversion and traditional endovascular coiling for treatment of aneurysms <10 mm.

CONCLUSION

This article describes the design of a multi-center, randomized, open-label trial to compare the safety and efficacy of the treatment of unruptured cerebral aneurysms with maximum diameter ≥7 mm by flow diversion versus traditional endovascular treatment. This trial is expected to warrant direct comparison of the two treatment methods with minimal bias.

AUTHORS’ DECLARATION

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

Informed consent

This type of study does not require informed consent.
• Acknowledgements

This research is supported by Korean NeuroEndovascular Society research fund (Kones-2020-02) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the ministry & Welfare, Republic of Korea (grant number: HC20C0057).

This research is supported by Korean NeuroEndovascular Society research fund (Kones-2020-02) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the ministry & Welfare, Republic of Korea (grant number: HC20C0057). We also would like to thank Editage (www.editage.co.kr) for English language editing.

Trial Registration: Clinical Research Information Service Identifier (KCT0006474).

References

29. UCAS Japan Investigators : The Natural Course of Unruptured Cerebral Aneurysms in a

Table 1. Aneurysm occlusion grading system (reproduced from the original article by Meyers et al.16)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Complete aneurysm occlusion</td>
</tr>
<tr>
<td>1</td>
<td>90% or greater aneurysm occlusion</td>
</tr>
<tr>
<td>2</td>
<td>70%-89% aneurysm occlusion</td>
</tr>
<tr>
<td>3</td>
<td>50%-69% aneurysm occlusion</td>
</tr>
<tr>
<td>4</td>
<td>25%-49% aneurysm occlusion</td>
</tr>
<tr>
<td>5</td>
<td>Less than 25% aneurysm occlusion</td>
</tr>
</tbody>
</table>
Table 2. Inclusion and exclusion criteria of the study.

<table>
<thead>
<tr>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Agreement of the patient for participation in the study and informed consent</td>
<td>1. Participants with severe neurologic deficit (modified Rankin scale score ≥3)</td>
</tr>
<tr>
<td>signed by the patient.</td>
<td>2. Participants at a high risk of thromboembolic cerebral infarction</td>
</tr>
<tr>
<td>2. Age between 19 and 75 years</td>
<td>3. Participants with other intracranial pathologies such as brain tumor, Moyamoya</td>
</tr>
<tr>
<td>3. Unruptured intracranial aneurysm with the maximum diameter ≥ 7mm</td>
<td>disease, arteriovenous malformations, etc.)</td>
</tr>
<tr>
<td>- First treatment or</td>
<td>4. Participants contraindicated for endovascular procedures due to unfavorable</td>
</tr>
<tr>
<td>- Treatment for recurrent aneurysm after initial endovascular treatment, confirmed</td>
<td>vascular anatomy or contraindication to antiplatelet therapy</td>
</tr>
<tr>
<td>as Aneurysm occlusion grading system Grade 2 or above</td>
<td>5. Participants with poor medication compliance</td>
</tr>
<tr>
<td></td>
<td>6. Participants with severe hepatic failure or renal failure (eGFR < 30 ml/min/1.7m²)</td>
</tr>
<tr>
<td></td>
<td>7. Participants with psychiatric disorders</td>
</tr>
</tbody>
</table>

eGFR, estimated glomerular filtration rate
Table 3. Study visits.

<table>
<thead>
<tr>
<th>Visits</th>
<th>V0*</th>
<th>V1*</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in relation to the intervention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within 4 weeks prior to V1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 1 ± 2 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 12 ± 4 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informed consent</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection of demographic information</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Past medical history/family history</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Vital signs</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Electrocardiogram</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Laboratory tests</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Pregnancy test</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Inclusion/exclusion criteria confirmation</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomization†</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endovascular treatment</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologic evaluation‡</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Adverse event</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Concomitant drug check</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

* V0 and V1 can coincide if a participant meets the inclusion/exclusion criteria

† Randomization of eligible participants may occur at any time between V0 and V1.

‡ Radiologic evaluation must include catheter cerebral angiography and additional angiography (e.g. CT angiography or MR angiography) may be performed.