Intraparenchymal Atypical Meningioma in Basal Ganglia Region in a Child: Case Report and Literature Review

Xiaowei Liu, M.M., Yuekang Zhang, M.D., Si Zhang, M.D., Chuanyuan Tao, M.D., Yan Ju, M.D.

Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu City, Sichuan Province, China

Intraparenchymal meningiomas without dural attachment are extremely rare, especially when they occur in basal ganglia region in child. An 8-year-old boy was admitted at our hospital, complaining of recurrent headache and vomiting for 3 months. Neurological examination showed impaired vision and mild paresis of the left extremities. Magnetic resonance imaging demonstrated a lesion located in the right basal ganglia region extending to suprasellar cistern with solid, multiple cystic and necrotic components. Computed tomography revealed calcification within the mass. Due to the anterior cerebral artery involvement, a subtotal resection was achieved and postoperative radiotherapy was recommended. Histopathological examination indicated that the lesion was an atypical meningioma. The postoperative rehabilitation was uneventful. Mildly impaired vision and motor weakness of left extremities improved significantly and the patient returned to normal life after surgery. To our knowledge, intraparenchymal atypical meningioma in basal ganglia extending to suprasellar cistern was never reported. The significance in differential diagnosis of lesions in basal ganglia should be emphasized.

Key Words: Intraparenchymal meningioma · Basal ganglia · Atypical meningioma.

INTRODUCTION

Meningiomas are the most common benign tumors among central nervous system (CNS) neoplasms\(^1\). However, meningiomas are rare in childhood and adolescence, representing only 0.4—4.6% of all CNS tumors\(^5\). Those located in intraparenchyma are much more rare without dural attachment\(^3\).

Intraparenchymal meningiomas, also considered as the same type of subcortical meningiomas, are defined as meningiomas located in brain parenchyma without dural attachment, occasionally reaching the brain surface\(^2,4,6\). To our best knowledge, there are only 18 intraparenchymal meningiomas in children reported in the literature, with most of them in the cerebral lobes\(^2,6-20\).

Here we report the first case of primary intraparenchymal meningioma in the deep basal ganglia region in children and review the pertinent literature to discuss the clinical presentation and management, radiological features, and possible pathogenesis. The significance in differential diagnosis of lesions in basal ganglia is also emphasized.

CASE REPORT

An 8-year-old boy presented at our hospital complaining of...
Intraparenchymal Meningioma in Basal Ganglia Region

Liu X, et al.

Intraparenchymal Meningioma in Basal Ganglia Region | Liu X, et al.

121

J Korean Neurosurg Soc 61 (1) : 120-126

recurrent headache and vomiting for 3 months. The patient saw a doctor in a clinic before admission to our hospital and took some medicine for cold. The symptoms got relief temporarily but became severe 1 week ago.

Neurological examination showed impaired vision and mild paresis (IV-grade of muscle strength) of the left extremities. CT (Fig. 1A, B) revealed an iso- to hyperdense lesion in the right basal ganglion extending to superasellar cistern, 4.0×4.4 cm in size with peripheral calcification. No hyperostosis of sellaturcica was noticed (Fig. 1C). Magnetic resonance imaging (MRI) demonstrated most of the mass lesion was iso-intense on T1-weighted, T2-weighted and fluid-attenuated inversion recovery images with inhomogeneous enhancement (Fig. 2A-E). No dural tail sign was noted. Diffusion tensor image revealed the right pyramidal tract was partially disrupted.

Under the guide of navigation, a transcortical (through the right middle frontal gyrus) approach was adopted to explore the lesion. There was no dural attachment, but the tumor was tightly adhered with the anterior cerebral artery (ACA). Small vessels supplied the anterior aspect of the tumor, subtotal resection (STR) was achieved.

Histopathological examination revealed features of atypical meningioma with Ki-67 labeling index been approximately 10% (Fig. 3A-C). Immunohistochemistry showed the tumor positive for epithelial membrane antigen and negative for glial fibrillary acidic protein and S-100 protein (Fig. 3D-F).

The patient suffered transient exacerbation of impaired vision and weakness of contralateral limbs after operation, which resolved significantly after 3 months follow-up. Postoperative MRI revealed that most of the tumor had been resected and the residual part has been detached from dorsum sellae (Fig. 2F).

DISCUSSION

Clinical presentation

Primary intraparenchymal meningiomas are rare, but more frequent in children and adolescents than in adults. To date, only 19 patients including ours, have been reported in the English-language literatures, which are summarized in Table 1. The age ranged from 0 to 18 years. Gender distribution showed a male dominance (n=14, 73.7%) in children and adolescents. The most common location was frontal lobe (n=8, 42.1%), followed by temporal lobe (n=5, 26.3%), parietal lobe (n=2, 10.5%), frontoparietal lobe (n=1, 5.3%), parietooccipital lobe (n=1, 5.3%), brainstem (n=1, 5.3%) and basal ganglia extending to superasellar cistern (our case, n=1, 5.3%). Presenting symptoms depend on tumor location and intracranial pressure, and seizure (n=13, 68.4%) was most frequent.

Management, features of histopathology and prognosis

Gross total resection (GTR) were achieved in 15 of 19 cases (78.9%). There was 70% remnant in one patient, because of the lesion in brainstem. Another patient got subtotal resection, but the reason was not stated. The study by Kotecha et

Fig. 1. CT revealing calcification, necrosis, cystic formation of the mass lesion (A and B). No hyperostosis or bone absorption was observed (C).
al.\(^{14,16}\) showed that extent of initial surgical resection was the strongest independent prognostic factor for pediatric meningiomas and upfront radiotherapy achieved no benefit. Hence, GTR was the treatment of choice. In our case, STR was performed because of the rich blood supply, tight adhesion with ACA and lower tolerance of blood loss in children.

Zhang et al.\(^{34}\) and Starshak\(^{30}\) treated patients with malignant meningiomas with postoperative radiotherapy. However, postoperative radiotherapy was controversial. Some people thought meningioma could be induced by radiation\(^{23}\). Others suggested that adjuvant radiotherapy might delay recurrence of malignant meningiomas or progression of residual meningiomas\(^{24}\). Our case received postoperative radiotherapy because of the atypical meningioma and residual tumor growing.

Intraparenchymal meningiomas were generally benign in children (n=11, 64.7%). Intraparenchymal atypical meningioma was first showed in Zhang’s study\(^{2}\). In our patient, the lesion also proved to be atypical meningioma (World Health Organization-II).

The prognosis is worse in pediatric than in adult population, depending on the degree of excision, pathologic grade,
Intraparenchymal Meningioma in Basal Ganglia Region | Liu X, et al.

The 10-year recurrence rate for GTR and STR is 33% and 82%, respectively. Hence, Kotecha et al. suggested the follow-up should be once every three months for at least 10 years and all life time for those with GTR or STR.

Features of radiology

The radiological features of pediatric primary intraparenchymal meningiomas include cystic component, calcification, large volumes and peritumoral edema. Compared with other meningiomas, the key difference of intraparenchymal meningiomas is the absence of dural attachment.

Differential diagnosis

The main radiological differential diagnosis for basal ganglia meningiomas includes gliomas, lymphomas and germinomas, but sometimes it is quite difficult by imaging findings alone. Generally, low grade gliomas are usually iso- to hypodense on un-enhanced CT scans, whereas germinomas and lymphomas are of high density. With progression and emergence of a predominantly solid component, it is more difficult to distinguish non-typical meningiomas from gliomas, germinomas or lymphomas, all of which are iso-dense to hyper-dense on un-enhanced CT scans and relatively isointense on all MR pulse sequences. Cystic changes, intratumoral hemorrhage and heterogeneous enhancement are more frequently seen in germinomas and gliomas. However, with the similar large size, peritumoral edema and mass effect are usually slighter in meningiomas than in gliomas. Hence, clinical manifestation and other supplementary examinations should be considered in such circumstances. For instance, it’s helpful to identify germinomas with tumor markers in serum and CSF or lymphoma with elevated lymphocytes percentage in peripheral blood and CSF. Careful evaluation of
<table>
<thead>
<tr>
<th>Study</th>
<th>Age (years) / Sex</th>
<th>Location</th>
<th>Clinical presentation</th>
<th>CT</th>
<th>MRI (solid part)</th>
<th>Surgery</th>
<th>Pathology</th>
<th>Postoperative treatment</th>
<th>Recurrence</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present case</td>
<td>8/M</td>
<td>Basal ganglia</td>
<td>Headache, vomiting, left hemiparesis</td>
<td>Iso/hyperdense, cyst, calcification</td>
<td>Isointense</td>
<td>Isointense</td>
<td>Heterogeneous</td>
<td>STR</td>
<td>Atypical</td>
<td>Rd</td>
</tr>
<tr>
<td>Nayil et al. (2015)</td>
<td>3/M</td>
<td>Frontal</td>
<td>Headache, vomiting</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Heterogeneous</td>
<td>GTR</td>
<td>Anaplastic</td>
<td>No</td>
</tr>
<tr>
<td>Werbrouck et al. (2014)</td>
<td>13/M</td>
<td>Temporal</td>
<td>Seizure</td>
<td>Hyperdense, calcification</td>
<td>NS</td>
<td>Hypointense</td>
<td>Homogeneous</td>
<td>GTR</td>
<td>Fibrous</td>
<td>No</td>
</tr>
<tr>
<td>Jung and Song (2002)</td>
<td>17/M</td>
<td>Frontoparietal</td>
<td>Seizure, hemiparesis</td>
<td>NS</td>
<td>Iso/hyperintense</td>
<td>NS</td>
<td>Heterogeneous</td>
<td>GTR</td>
<td>Transitional</td>
<td>No</td>
</tr>
<tr>
<td>Pinto et al. (2012)</td>
<td>17/F</td>
<td>Temporal</td>
<td>Seizure</td>
<td>NS</td>
<td>Hyperintense</td>
<td>Hypointense</td>
<td>Homogeneous</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Shimbo et al. (2011)</td>
<td>10/M</td>
<td>Frontal</td>
<td>Seizure</td>
<td>Isodense</td>
<td>Iso/hypointense</td>
<td>Isointense</td>
<td>Homogeneous</td>
<td>GTR</td>
<td>Meningothelial</td>
<td>No</td>
</tr>
<tr>
<td>Zhang et al. (2007)</td>
<td>16/M</td>
<td>Parietooccipital</td>
<td>Seizure</td>
<td>NS</td>
<td>Isointense</td>
<td>Hyperintense</td>
<td>Heterogeneous</td>
<td>GTR</td>
<td>Atypical</td>
<td>Rd</td>
</tr>
<tr>
<td>Karadereler et al. (2004)</td>
<td>14/M</td>
<td>Temporal</td>
<td>Seizure, headache</td>
<td>Hypointense</td>
<td>Hypointense</td>
<td>Heterogeneous</td>
<td>GTR</td>
<td>Fibrous</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Teo et al. (1998)</td>
<td>18/F</td>
<td>Brainstem</td>
<td>Hemiparesis</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>STR</td>
<td>Clear cell</td>
<td>Rd refused</td>
</tr>
<tr>
<td>Starshak (1996)</td>
<td>68/M</td>
<td>Frontal</td>
<td>Headache</td>
<td>NS</td>
<td>Heterogeneous</td>
<td>Heterogeneous</td>
<td>Heterogeneous</td>
<td>GTR</td>
<td>Sarcomatous</td>
<td>Rd, ch</td>
</tr>
<tr>
<td>Kohama et al. (1996)</td>
<td>18/F</td>
<td>Frontal</td>
<td>Seizure</td>
<td>Hyperdense</td>
<td>Iso/hypointense</td>
<td>Hypointense</td>
<td>Homogeneous</td>
<td>GTR</td>
<td>Fibroblastic</td>
<td>No</td>
</tr>
<tr>
<td>Perilongo et al. (1992)</td>
<td>2/M</td>
<td>Temporal</td>
<td>NS</td>
<td>NS</td>
<td>Isointense</td>
<td>NS</td>
<td>Homogeneous</td>
<td>GTR</td>
<td>NS</td>
<td>No</td>
</tr>
<tr>
<td>Mamourian et al. (1999)</td>
<td>2/F</td>
<td>Frontal</td>
<td>Vomiting, microcephaly</td>
<td>Heterogeneous, calcification</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>GTR</td>
<td>Psammomatous</td>
<td>No</td>
</tr>
<tr>
<td>Schroeder et al. (1987)</td>
<td>7/M</td>
<td>Frontal</td>
<td>Seizure</td>
<td>Hyperdense, calcification</td>
<td>Hypointense</td>
<td>Hypointense</td>
<td>NS</td>
<td>GTR</td>
<td>Fibroblastic</td>
<td>NS</td>
</tr>
<tr>
<td>Sakaki et al. (1987)</td>
<td>0.9/M</td>
<td>Frontal</td>
<td>Seizure</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Homogeneous</td>
<td>GTR</td>
<td>Fibroblastic</td>
<td>No</td>
</tr>
<tr>
<td>Kimura et al. (1987)</td>
<td>0.9/M</td>
<td>Frontal</td>
<td>Seizure</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>GTR</td>
<td>Fibrous</td>
<td>No</td>
</tr>
<tr>
<td>Drake et al. (1986)</td>
<td>12/M</td>
<td>Temporal</td>
<td>Seizure</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>STR</td>
<td>Transitional</td>
<td>No</td>
</tr>
<tr>
<td>Legius et al. (1983)</td>
<td>12/M</td>
<td>Parietal</td>
<td>Seizure</td>
<td>Hyperdense</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>GTR</td>
<td>Fibrous</td>
<td>No</td>
</tr>
<tr>
<td>Mormomo et al. (1980)</td>
<td>17/F</td>
<td>Parietal</td>
<td>Seizure</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>GTR</td>
<td>Anaplastic</td>
<td>NS</td>
</tr>
</tbody>
</table>

radiologic features should be emphasized, which would assist in selection of the preferred treatment for patients.

Pathogenesis of primary intraparenchymal meningiomas

The pathogenesis of primary intraparenchymal meningiomas is unclear. Some theories are proposed to explain the possible mechanism: 1) intraparenchymal meningiomas arise from arachnoid cells of the piamater, which enter the brain along with perforating blood vessels; 2) the meningiomas, which arise from the piamater of brain sulcus, adheres and compresses the brain parenchyma, and grows into the intraparenchymal lesion, so the mass is seen to be completely buried in the parenchyma; 3) some authors presume that the arachnoid cells rest during the migration progress; 4) intraparenchymal meningiomas are believed to arise from ectopic meningotheelial cells within the stroma of the piamater, and 5) the occurrence may be due to cellular dedifferentiation within the cerebral parenchyma, or they may arise from the sheath cells of cranial nerves, which is proposed as the similar mechanism for the equally uncommon cutaneous meningioma and intradiploic meningioma. The first two theories are the most probable mechanisms to explain the origin in our case, based on the close relationship with the perforating arteries of ACA and middle cerebral artery and recurrent artery of Heubner, the imaging features and intraoperative findings.

CONCLUSION

For lesions of basal ganglion extending to the superasellar region, lack of dural attachment is the key neuroimaging feature for differentiating intraparenchymal meningiomas from tuberculosis sellae, clinoid, sphenoid wing and cavernous sinus meningiomas. Intraparenchymal meningiomas should be considered when gliomas, lymphomas, germinomas and other common lesions are excluded. The intraparenchymal atypical meningioma of basal ganglion in child is firstly reported, which should be emphasized in differential diagnosis to assist in selection of the preferred treatment for patient or avoiding a delay in management.

PATIENT CONSENT

The patient provided written informed consent for the publication and the use of their images.

References