Late Occurrence of Cervicothoracic Ossification of Posterior Longitudinal Ligaments in a Surgically Treated Thoracic OPLL Patient

Seung-Jae Hyun, M.D., Jong-Soo Kim, M.D., Seung-Chyul Hong, M.D.
Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Osseous ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine is rare, even in the Far East. A 45-year-old female presented with a 4-month history of progressive motor weakness in the lower extremities, numbness below the midthoracic area, and spastic gait disturbance. Neuroradiological examinations revealed massive OPLLs at the T4-T6 levels with severe anterior compression of the spinal cord. Anterior decompressive corpectomies with bone grafts were performed from T4 to T6 using a trans-thoracic approach. After surgery, the patient made an uneventful recovery. However, eleven years after surgery, the patient developed recurrent lower extremity weakness and gait disturbance. De novo OPLLs at the C6-T2 levels were responsible for the severe spinal cord compression on this occasion. After second surgery, paralysis in both legs was resolved. We present a rare case of late cervicothoracic OPLL in a patient surgically treated for thoracic OPLL.

KEY WORDS: Cervicothoracic spine · Thoracic spine · Ossification of the posterior longitudinal ligament · Late occurrence · Anterior decompression.

INTRODUCTION

Symptomatic osseous ossification of the posterior longitudinal ligaments (OPLLs) usually occurs in the cervical vertebrae and is one of the main causes of cervical myelopathy. Thoracic myelopathy caused by OPLL is rare, as compared with cervical myelopathy, but the incidence of concurrent thoracic OPLL in patients with cervical OPLL has not been well established because of the rarity of the condition, even in the Far East area. In terms of surgery for cervical OPLL, complete recognition of OPLL and ossification of the ligamentum flavum (OLF) in the cervical and thoracic spine is critical for planning cervical spine procedures.

We present an unusual case of extensive cervicothoracic OPLL following an anterior decompression operation for thoracic OPLL.

CASE REPORT

A 45-year-old female presented with a 4-month history of progressive motor weakness in the lower extremities, numbness below the midthoracic area, and spastic gait disturbance. A neurological examination revealed spasticity in lower limbs with brisk deep tendon reflexes and grade 4/5 power in lower extremities, particularly in hip flexors. There was also a subjective decrease in pinprick sensation below the 4th thoracic dermatome and urinary incontinence. She was evaluated using the Japanese Orthopedic Association (JOA) scoring system, and scored 9 out of a maximum of 17 points.

Computerized tomography (CT) scans showed massive OPLLs at the T4-T6 levels (Fig. 1A), and small OPLLs at the C7-T1 levels. Magnetic resonance imaging (MRI) of the cervical and thoracic spine demonstrated ventral bony masses at the same levels with severe anterior compression of the spinal cord between T4 and T6 (Fig. 1B). We diagnosed this as myelopathy resulting from thoracic OPLL.

First operation and postoperative course

Anterior decompressive corpectomies under intraopera-
tive monitoring using somatosensory evoked potentials (SEPs) were performed from T4 to T6 using a trans-thoracic approach with bone grafting using a piece of ileum. After surgery, the patient made an uneventful recovery, and experienced strength improvement. Postoperative CT showed sufficient decompression of the thoracic spinal cord (Fig. 1C, D). Her clinical symptoms slightly improved and her JOA score increased from 9 to 15.

However, eleven years after surgery the patient developed recurrent progressive lower extremity weakness, spastic gait disturbance, and urinary incontinence. MRI and CT scans demonstrated massive OPLLs at the C6-T2 levels with severe spinal cord compression (Fig. 2A, B).

Second operation and postoperative course

Under motor evoked potential and SEP monitoring, the patient underwent additional anterior corpectomies from C6 to T2 via a trans-sternal approach with anterior inter-body fusion from C5 to T3 using a titanium mesh cage and a plate and screw system with bone grafting using a femur head allograft (Fig. 2C, D, and E). Immediately after surgery, paralysis resolved in both legs, although numbness and hypesthesia remained in both legs. She was satisfied with her surgical results and her JOA score recovered to 15 points at 6 months postoperatively.

DISCUSSION

Ossification of the posterior longitudinal ligament in the thoracic spine is rare, even in the Far East area4,8), and is sometimes discovered during inspections of the whole spine in patients with cervical OPLL. Some patients report only myelopathy without an accompanying cervical disorder. However, myelopathy due to thoracic OPLL may rapidly become complete after symptom onset. On the other hand, other patients with thoracic OPLL report only continuous back pain during consultation. Ossifications of spinal ligaments, such as, the OPLL and OLF in the thoracic spine, are usually asymptomatic when lesions are small and thin and there is no cord compression. However, after myelopathy in the thoracic and cervicothoracic spine appears due to OPLL, OLF, or a combination of the two, conservative management is no longer an option. Several reports have suggested that surgical management is the most effective treatment for thoracic myelopathy16). Thoracic surgical approaches may be classified into anterior and posterior techniques2,3,7). Anterior procedures include the trans-thoracic approach5), median sternotomy7), the trans-sternal approach13), and anterior decompression through the posterior approach9), while posterior techniques include laminectomy15).
Anterior lesions, such as, OPLLs in the upper thoracic spine, may be decompressed using either an anterior or posterior procedure. However, some investigators have suggested that laminectomy is generally ineffective for the management of thoracic myelopathy and that it occasionally precipitates clinical worsening, especially in the presence of a predominantly anterior OPLL pathology. Stillerman and colleague observed that laminectomy when used to treat thoracic disc herniations led to poor results, and concluded that it is unsuitable for anterior thoracic lesions\(^\text{12}\).

Therefore, anterior procedures were used to address upper thoracic OPLL. In the upper thoracic spine, median sternotomy and trans-sternal approaches are employed, but in cases of OPLL extending from the upper cervical spine to the thoracic spine, posterior procedures are more suitable than anterior alternatives\(^\text{4}\).

In the present case, cervicothoracic OPLL developed 11 years after thoracic OPLL surgery. In long-term follow-up studies on cervical OPLL, de novo growth of thoracic OLF was frequently found in patients who experienced a delayed neurologic deterioration\(^\text{5,10}\). Some earlier investigators reported the late recurrence and progression of thoracic OLF\(^\text{11,14}\). They concluded that mechanical stress was believed to play an important role in the progression of thoracic OLF and spinal hypermobility might lead to the ossification of the ligament. However, the incidence of ossified thoracic ligaments, including OPLL and OLF, combined with cervical OPLL has not been reported.

CONCLUSION

We present a rare case of late cervicothoracic OPLL development in a surgically treated thoracic OPLL patient. The de novo development of cervicothoracic OPLL is rare and treatments are surgically demanding.

• Acknowledgements
 The submitted manuscript does not contain information about medical devices or drugs.
 No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

References